

TARGET AUDIENCE

This CE activity is intended for hematologists-oncologists, medical oncologists, nurse practitioners, nurses and pharmacists involved in the care of patients with myeloma.

EDUCATIONAL OBJECTIVES

After completing this CE activity, the participant should be better able to:

- · Describe the latest developments in myeloma, including current and emerging treatments
- Engage patients and caregivers in discussions on clinical trials, newly approved therapies and emerging therapies for myeloma, including combination therapies, CAR T-cell therapy and bispecific antibodies
- Identify strategies for optimal patient care
- Apply evidence-based treatment strategies
- Access patient support resources

SPEAKERS

Edward A. Stadtmauer, MD (Chair, Myeloma Rounds, Philadelphia)

Section Chief, Hematologic Malignancies Roseman, Tarte, Harrow, and Shaffer Families' President's Distinguished Professor University of Pennsylvania Abramson Cancer Center Philadelphia, PA

Cindy Varga, MD (Chair, Myeloma Rounds, Winston-Salem)

Associate Professor Atrium Health Levine Cancer Institute Plasma Cell Dyscrasia Division Department of Hematology and Oncology Charlotte, NC

3

۵

Cindy Varga, MD

Associate Professor Atrium Health Levine Cancer Institute Plasma Cell Dyscrasia Division Department of Hematology and Oncology Charlotte, NC

LEUKEMIA & LYMPHOMA SOCIETY°

Iberdomide Maintenance after Autologous Stem Cell Transplantation in Newly Diagnosed MM: First Results of the Phase 2 EMN26 Study

Niels W.C.J. Van De Donk¹, Cyrille Touzeau², EvangelosTerpos³, Aurore Perrot⁴, Roberto Mina^{5,6}, Maaike de Ruijter¹, Elisabetta Antonioli⁷, Eirini Katodritou⁸,Norbert Pescosta⁹, Paulus A.F. Geerts¹⁰, Cécile Sonntag¹¹, Ruth Wester¹², Angelo Belotti¹³, Silvia Mangiacavalli¹⁴,Massimo Offidani¹⁵, Mattia D'Agostino^{5,6}, Mark van Duin¹², Michele Cavo¹⁶, Sara Aquino¹⁷, Alessandra Lombardo¹⁸, Mark-David Levin¹⁹, Cyrille Hulin²⁰, Mario Boccadoro²¹, Pieter Sonneveld¹² and Francesca Gay⁵

۵

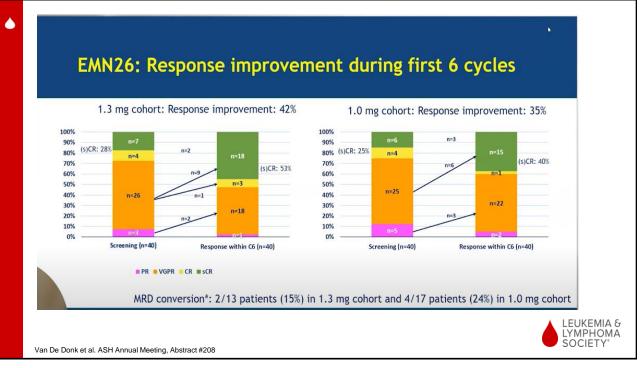
INTRODUCTION

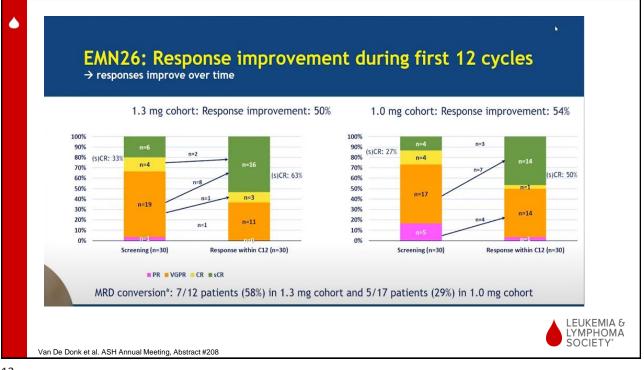
- Maintenance lenalidomide post ASCT is currently the standard of care
- About 25% of patients will discontinue Len maintenance due to poor tolerance or adverse events
- There is unmet need for improved maintenance drugs with better efficacy and tolerability
- Iberdomide is a novel oral cereblon E3 ligase modulator (CELMoD) with greater immunomodulatory effects than IMiDs

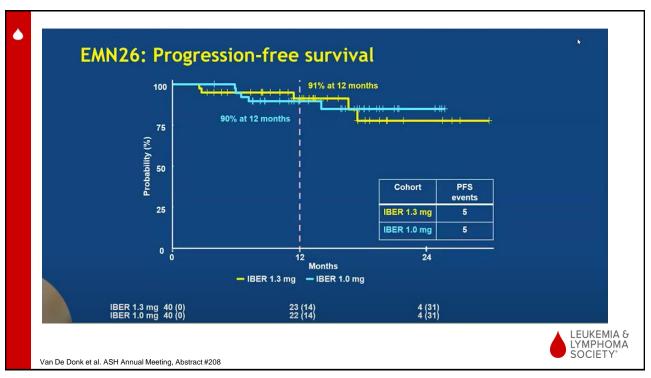
LEUKEMIA & LYMPHOMA SOCIETY

LEUKEMIA & LYMPHOMA SOCIETY°

۵ EMN26 • Eligibility criteria Iberdomide on day 1-21 Cohort 1: Cohort 2: Cohort 3: of 28-day cycles until PD • IMid-PI induction • At least a PR after ASCT 1.3 mg 0.75 mg 1.0 mg Dose Level 0 MRD (NGF) every 6 months • Primary endpoint: • Efficacy (response 0.75 mg 0.45 mg 1.0 mg improvement within 6 mos) **Dose Level -1** 4 • Secondary endpoints • MRD by NGF Dose Level -2 0.75 mg 0.45 mg Adverse events • PFS Dose Level -3 N=120 (40 per cohort) 0.45 mg

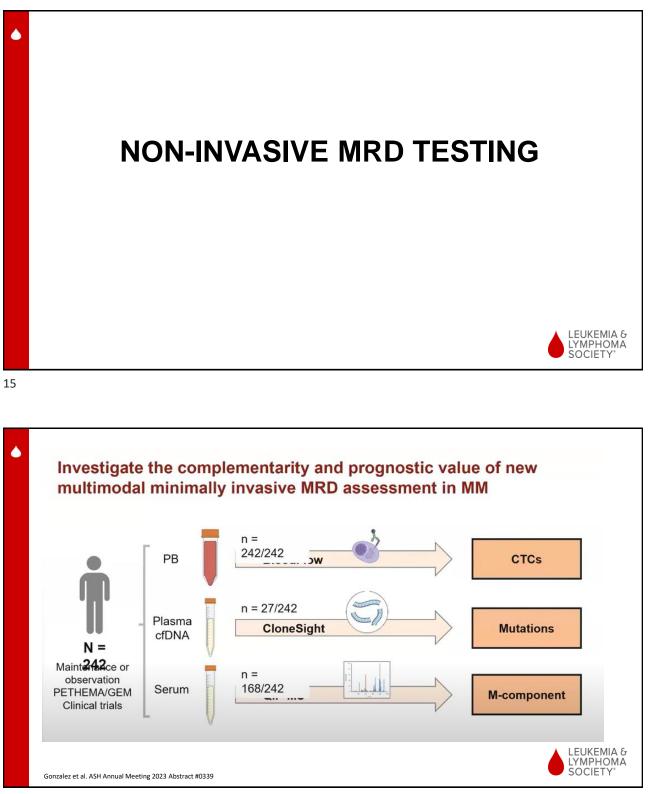

Van De Donk et al. ASH Annual Meeting, Abstract #208

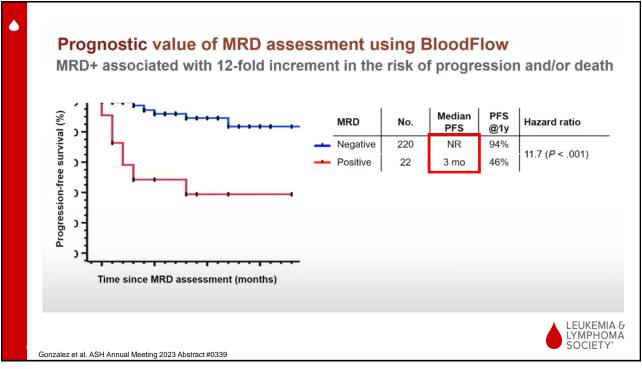

7

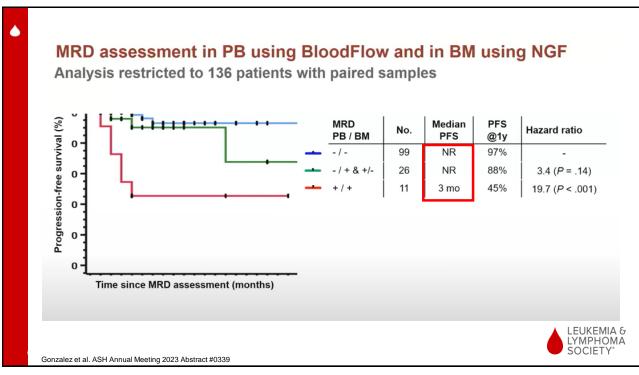

Patient disposition (all cycles)	1.3 mg cohort (N = 40)	1.0 mg cohort (N = 40)	0.75 mg cohort (N = 40)
Follow-up, median (IQR), months	14.6 (11.6-19.6)	17.0 (13.1-20.7)	4.7 (3.3-6.3)
Ongoing, n (%)	30 (75)	34 (85)	37 (92)
Discontinued, n (%) Death* Adverse event Progression of disease	10 (25) 2 (5) 6 (15) 2 (5)	6 (15) 0 2 (5) 4 (10)	3 (8) 0 1 (3) 2 (5)
Treatment exposure cycles 1-12	1.3 mg cohort (N = 40)	1.0 mg cohort (N = 40)	0.75 mg cohort (N = 40)
Treatment duration, median (IQR), weeks	49.9 (47.9-52.6)	49.4 (47.5-51.5)	24 (17.0-31.4)
Cycles received, median (IQR)	12 (12-12)	12 (12-12)	6 (5-7)
Dose reduction, n (%)	18 (45)	15 (38)	4 (10)
Discontinuation due to adverse event, n (%)	4 (10)	1 (3)	1 (3)
		89 (75-79)	92 (85-97)

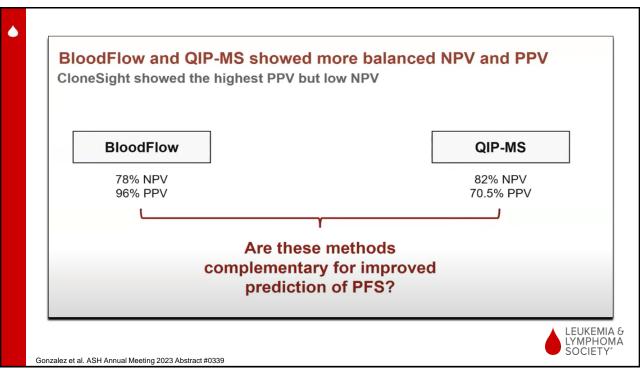
	1.3 mg coh	nort (n-=40)	1.0 mg co	hort (n=40)
AE, n (%)	Grade 1/2	Grade 3/4	Grade 1/2	Grade 3/4
utropenia	4 (10)	20 (50)	4 (10)	17 (42)
ebrile neutropenia	0	0	0	1 (2)
hrombocytopenia	6 (15)	0	4 (10)	0
nemia	2 (5)	0	6 (15)	0
phopenia	3 (8)	1 (2)	2 (5)	1 (2)

	1.3 mg coh	nort (n-=40)	1.0 mg co	hort (n=40)	
AE, n (%)	Grade 1/2	Grade 3/4	Grade 1/2	Grade 3/4	The majority of non- hematologic AEs wer
Fatigue	7 (18)	6 (15)	7 (18)	4 (10)	low grade
Diarrhea	2 (5)	0	8 (20)	0	
Constipation	2 (5)	0	2 (5)	0	No second primary
Peripheral neuropathy	6 (15)	1 (3)	5 (13)	0	malignancies report
Hyper/hypothyroidism	4 (10)	0	9 (23)	0	
Rash*	8 (20)	4 (10)	7 (18)	1 (3)	Rash was transient
Venous thromboembolism	0	0	0	0	and occurred mainly
Infections	22 (55)	4 (10)	21 (52)	5 (13)	during first cycle
COVID-19	7 (18)	0	12 (30)	0	
Pneumonia	3 (8)	2 (5)*	1 (3)	2 (5)**	

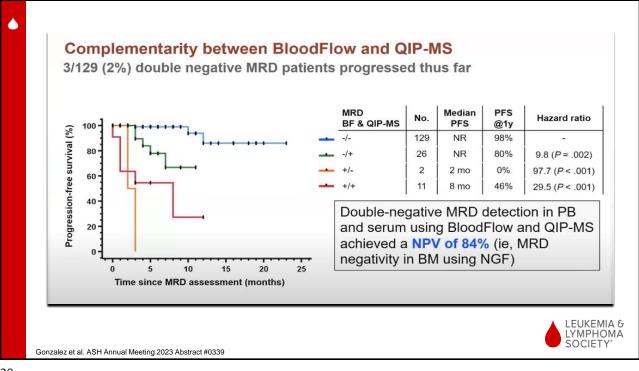


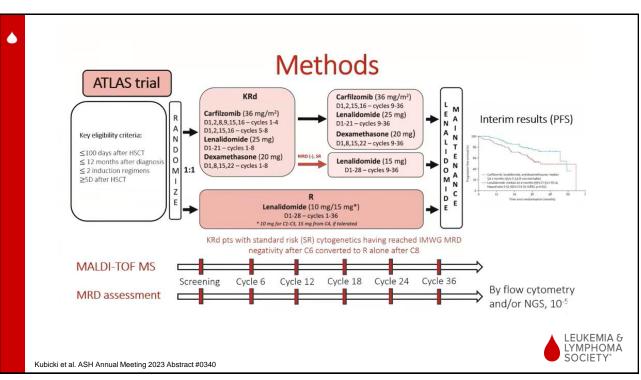

CONCLUSIONS

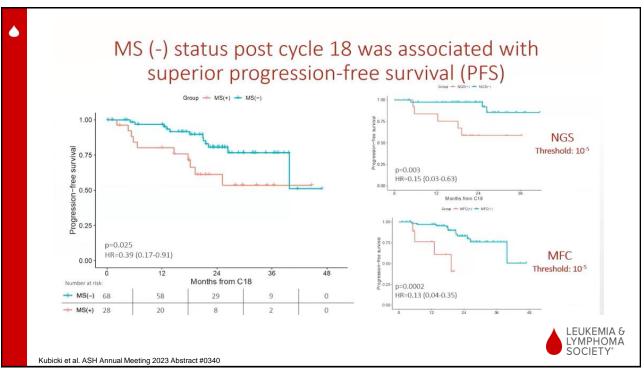

- Iberdomide maintenance results in an improvement in response over time in patients who received IMiD/PI-based induction +/- antiCD38 and ASCT
 - Iberdomide demonstrate at least a 50% improvement of response at cycle 12
 - Len demonstrated 31% improvement of response at cycle 12 in the EMN02 trial
- Promising MRD conversion data with iberdomide post ASCT was observed
- Iberdomide showed manageable toxicity


Excalibur trial

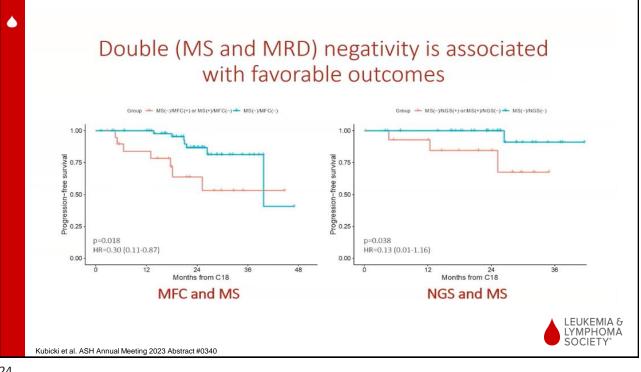
 Ongoing phase III registrational trial of iberdomide vs. lenalidomide maintenance post transplant (NCT05827016)

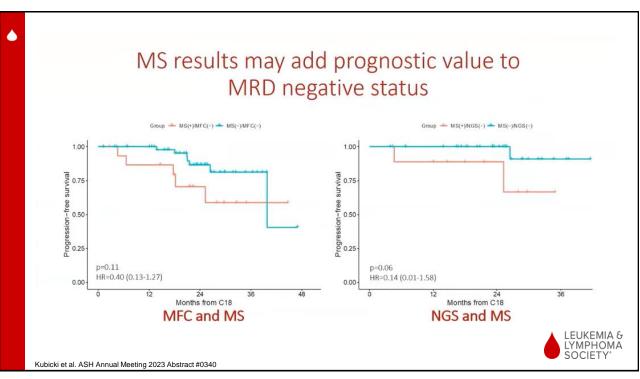


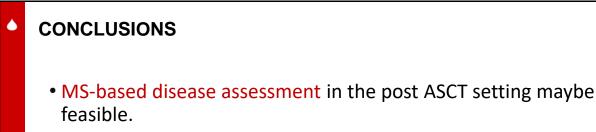


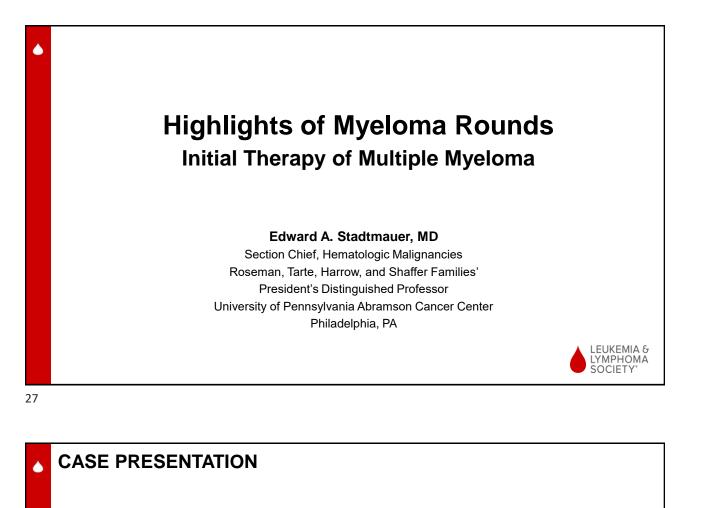


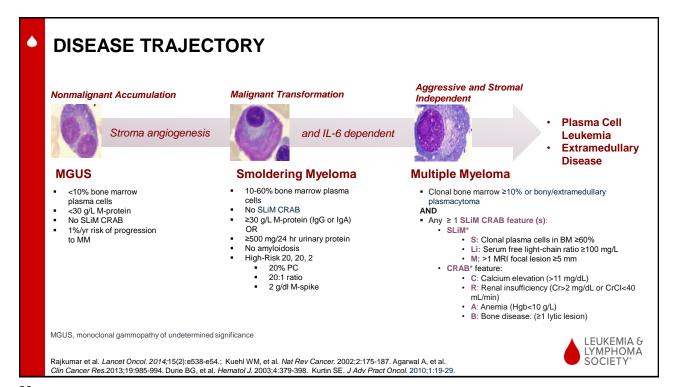
- BloodFlow and QIP-MS are empowered to detect MRD with high sensitivity in PB and serum
- The presence of CTCs was systematically associated with dismal PFS
- BloodFlow showed very high PPV and QIP-MS achieved the highest NPV
- The complementarity between these methods enabled the identification of multimodal MRD negative patients with very low risk of relapse
- This study paves the way towards minimally invasive MRD assessment in MM patients on maintenance or observation

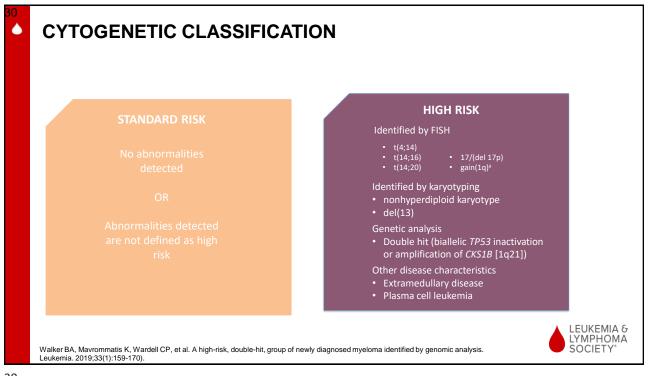


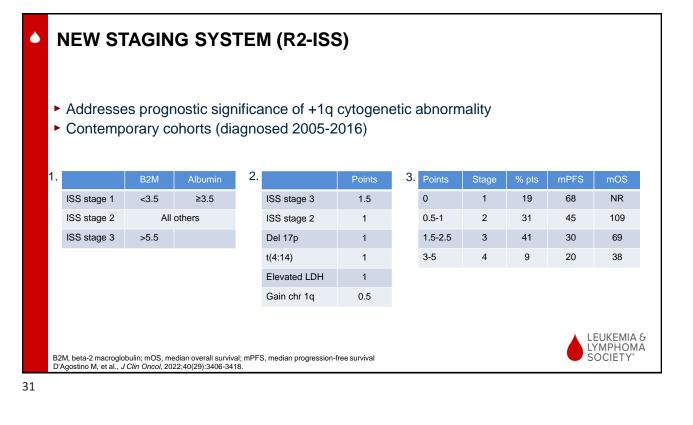


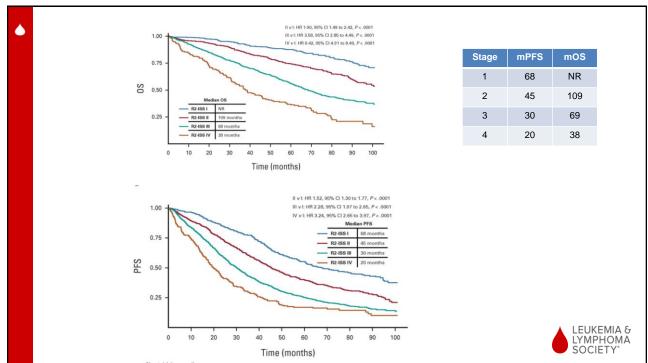


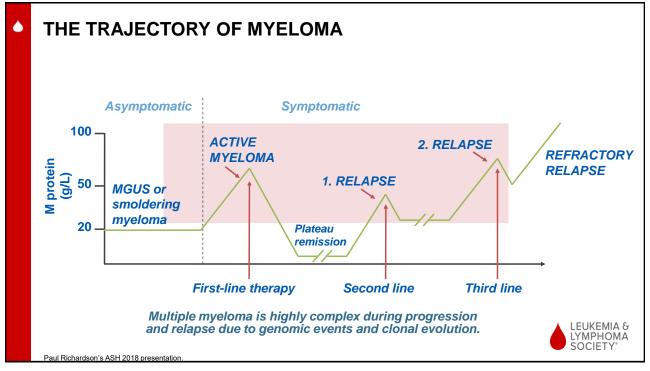


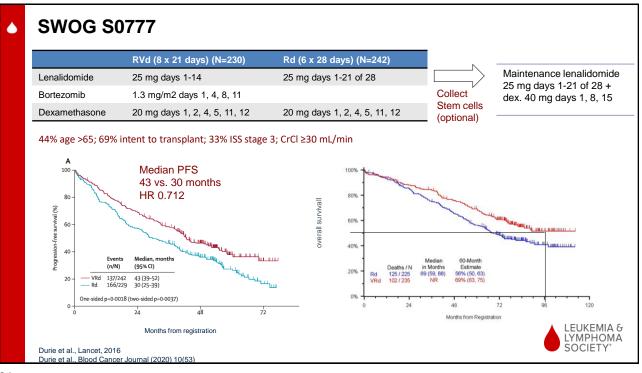

- Prognostic significance of MS negativity increase with time.
- MS is complementing BM-based MRD assessments.
- Further prospective studies are needed confirm these conclusions.






- 9/12/22: 35 yo AA woman with hx of pituitary adenoma and HTN presented to PCP with right shoulder pain. X-ray
 was unremarkable. Referred to Ortho.
- 11/28/22: Repeat x-ray showed large lytic lesion of right proximal humerus. MRI showed 7.5 x 4.6 x 4.7 cm lesion with complete replacement of acromion (Figure 1) and similar 4.3 x 2.4 x 4.8 cm mass replacing humeral head, both with extensive marrow replacement.
- 12/6/22: US-guided biopsy of right acromion mass shows sheets of small to intermediate sized atypical plasmacytoid cells that are CD38+, CD138+, CD117+ (subset) and CD79a+ (dim, small subset). Kappa and lambda ISH staining is weak. Ki-67 15%. Positive clonal IGH gene rearrangement.
- 12/7/22: CT CAP with large lucent lesion in T12 with possible inferior endplate fracture. Other small lucent lesions throughout skeleton.
- Hg 9.7, ca 12.7 alb 2.9, SPEP M-spike 3.9 g/dl IgG kappa, kappa 248.6, lambda 3,1, ratio 80.19, IgG 4221, B2M 4.91, LDH 247.
- ▶ 1/1-1/13/23: Admitted for intractable pain in right shoulder and lower back.
- 1/4/23: BM biopsy with hypercellular marrow (95%) and 80% involvement by kappa light chain-restricted plasma cells.





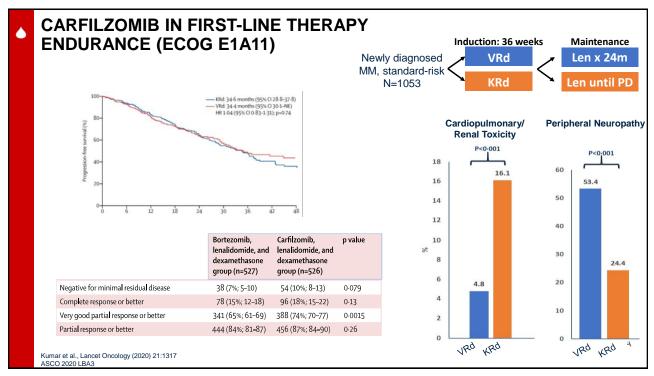
S0777 TOLERABILITY IN OLDER PATIENTS; BORTEZOMIB SCHEDULE

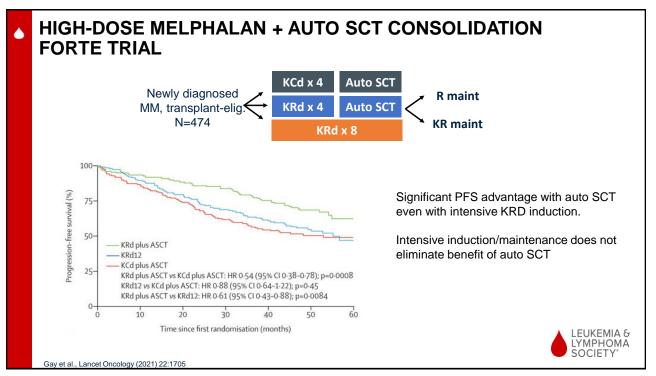
- Once weekly bortezomib: Same OS/PFS, less peripheral neuropathy.
- Twice weekly bortezomib: Faster time to best response
- We often start with twice weekly dosing and switch to once weekly dosing after 1-2 cycles in patients with symptomatic complications.

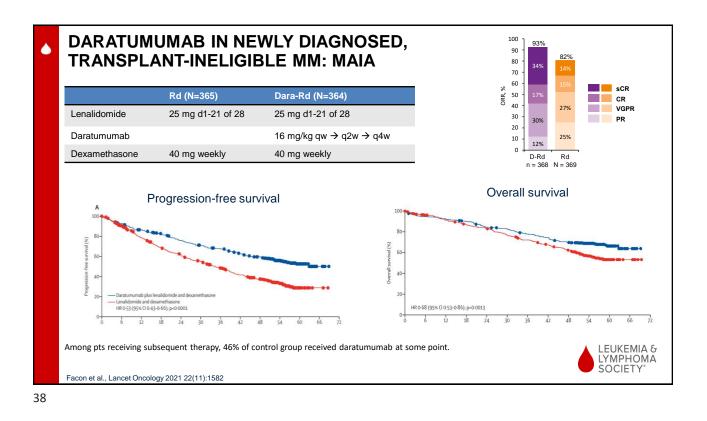
Subgroup analysis of SWOG S0777 by age

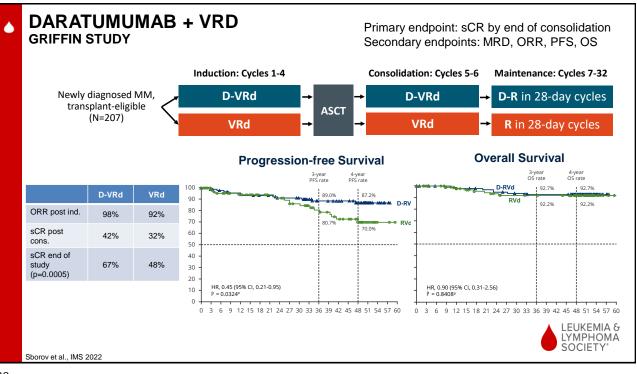
Table 1. Age-stratified analyses of progression-free survival, overall survival, and safety in SWOG S0777.

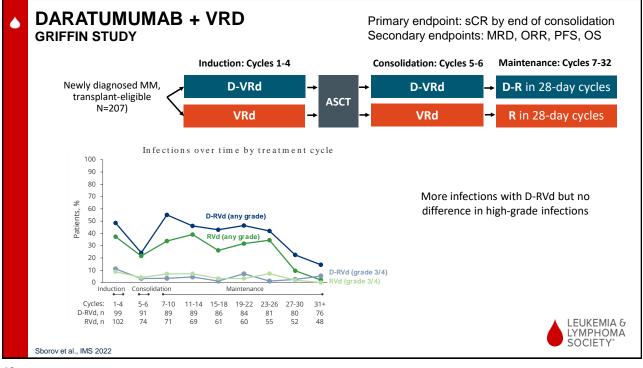
Outcome	Age <65 yea	irs (n=269)	Age ≥65 yea	irs (n=202)
Outcome	VRd (n=149)	Rd (n=120)	VRd (n=93)	Rd (n=109)
Progression-free survival (PFS)	1.000.0000.00	5894-1965 N		
 Median progression-free survival 	55.4 months	36.6 months	33.1 months	25.8 months
 Hazard ratio (95% CI) 	0.63 (0.46, 0.87)	Reference	0.83 (0.60, 1.16)	Reference
 Adjusted hazard ratio⁺ (95% CI) 	0.61 (0.45, 0.84)	Reference	0.90 (0.65, 1.26)	Reference
Overall survival (OS)	20625-195-197	300.2 10	1.000 0	0.000 m
 Median overall survival 	Not reached	68.9 months	62.9 months	53.0 months
 Hazard ratio (95% CI) 	0.61 (0.39, 0.97)	Reference	0.83 (0.55, 1.23)	Reference
 Adjusted hazard ratio* (95% CI) 	0.62 (0.39, 0.99)	Reference	0.88 (0.59, 1.31)	Reference
Safety#				
 Incidence of grade ≥3 treatment- emergent adverse events 	87%	79%	93%	89%
 Incidence of treatment discontinuation due to toxicity 	29%	18%	47%	26%

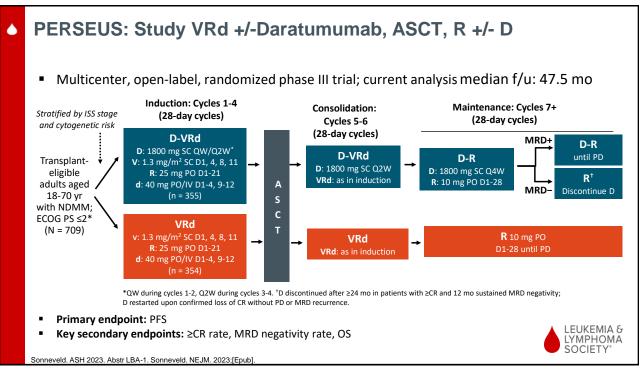

Abbreviations: VRd, bortecomilo-lenalidomide-dexamethasone; Rd, lenalidomide-dexamethasone; D, confidence interva

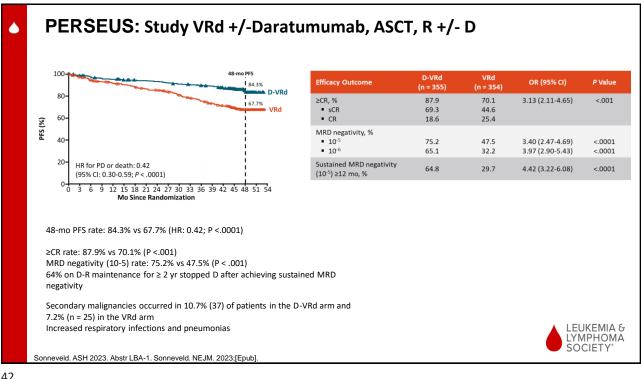

Majored hazed ratio estimates reflect exults from weighted Cox regression models where inverse-probability of exatures regression to balance the VML and lid trial arms on the following measured baseline durationistics within and age subproved (255, 45) years); age, to immitted to Stage System (35) years, takes to Cooperative doology drives (CCO) performance tasks cooperative duration (24, 26), and years); and and the subproved stage subproved (24, 26), and years); and years are doology drives (CCO) performance tasks cooperative duration (24, 26), and years); and years are low, committed (24, 26), and years); and years are subproved (24, 26), and years); and years are subproved and years are subproved and years and years are proved and years); and years are subproved and weight of the subproved and years are subproved and years are performed and years are subproved and years are performed and years are subproved and years are performed and years

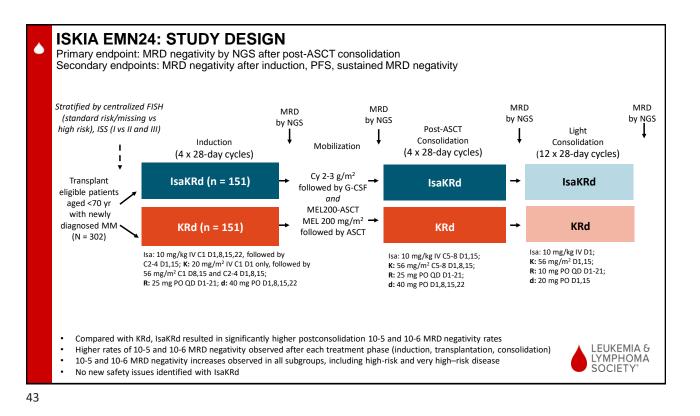


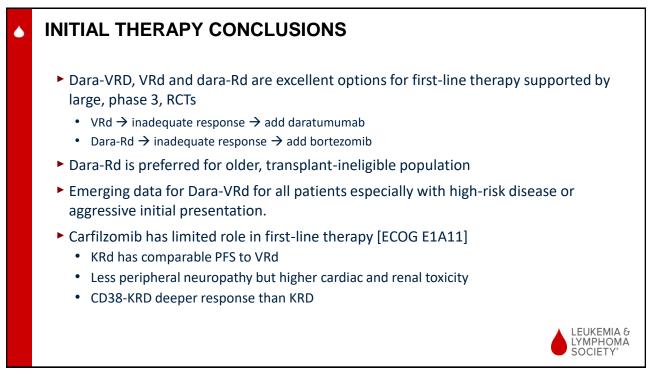

Cook et al., Am J Hematol (epub ahead of print) doi: 10.1002/ajh.26074 Durie et al., ASH 2022, abstract 4497

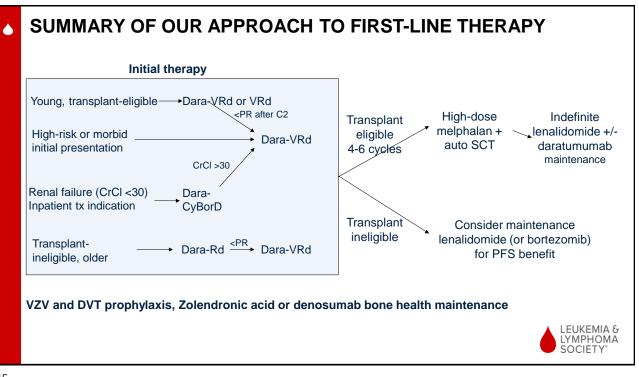

35





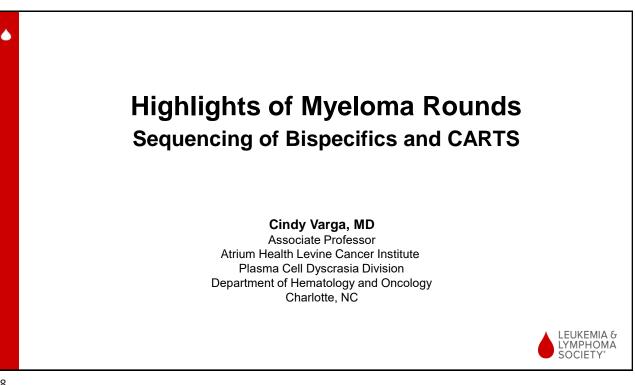


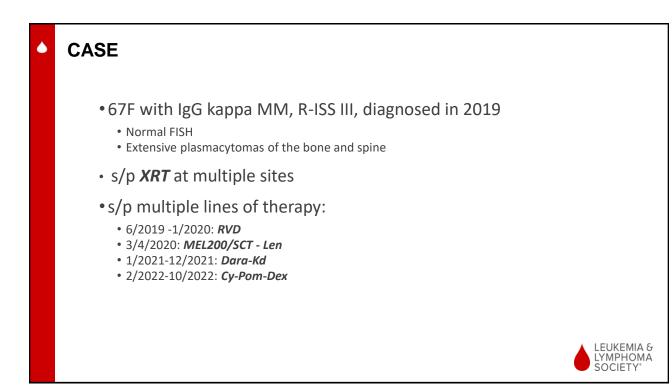




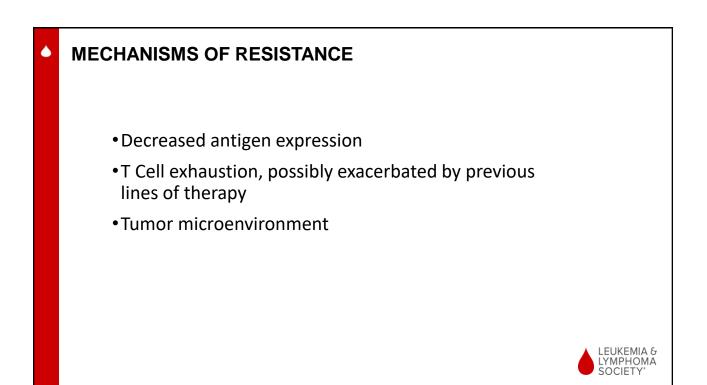
CASE

- 1/4/23: Bortezomib 1.3 mg/m2 (days 1, 4, and 8) and dexamethasone 40 mg daily x 4 days w/ acyclovir prophylaxis. Leuprolide for oncofertility (no time for egg preservation).
- ▶ 1/6/23: Palliative RT to right shoulder and left humerus for pain control.
- 1/10/23: IR-guided T12 percutaneous vertebroplasty.
- Discharged with pain regimen and plan for D-VRd as outpatient as per GRIFFIN trial.
- Lenalidomide to start post-IUD placement.
- Abnormal with gains of chromosomes or segments 1q (3 copies), 9, 17p and 19 and losses of 8p, 16p and 17p in mixed states representing clonal diversity.
- NGS: APC (7.0%), BRCA2 (51.3%; VUS), CARD11 (4.6%), CUX1 (9.3%), DOT1L (13.2%), two ERBB2 variants (5.0% and 5.6%), ETV6 (49.7%), two GEN1 variants (49.7% and 51.7%), KMT2C (49.2%), MYCL (4.8%), NTRK3 (46.5%), PBRM1 (47.2%), PIK3R2 (8.2%), TET2 (6.6%), WHSC1 (5.9%).
- FISH: Positive for t(14;16) in 57 of 100 cells, 17p/TP53 deletion in 23 of 100 cells, IGH rearrangement in 59 cells of 100 cells.
- ▶ R-ISS Stage II (42 months median progression-free survival) with triple hit myeloma.




CASE

- 1/16/23: C2 D-Vd
- 1/24/23: Started lenalidomide with aspirin prophylaxis; held on 1/31/23 for orthopedic surgery on 2/8/23.
- 2/8/23: Underwent right humeral cooled radiofrequency ablation, ORIF surgery, cementoplasty, and proximal humeral resection with improvement in pain.
- 2/15-2/28/23: Admitted for hypercalcemia and acute kidney injury, Zolendronate and IVF.
- Pulse dexamethasone 40 mg x 4 days.
- ► Worse low back pain worse → MRI with new lesions in T7, T8, T10, T11, L1 and sacrum. New T8 pathologic compression fracture with partial retropulsion at T8 and T12 causing mild to moderate canal stenosis. M-spike 3.2
- Initiated KD-PACE based on ultra high-risk cytogenetic profile (C1 completed 3/30/23).
- 4/6/23: Repeat BM biopsy with hypercellular marrow (85%) with trilineage hematopoiesis due to growth factor support without evidence of plasma cell neoplasm. CMA without high-risk cytogenetics.
- 4/18/23: Stem cell collection (target 8 million CD34 cells/kg; collected 15.61 million CD34 cells/kg).
- 4/24/23: Melphalan-conditioned autoHSCT (possible tandem autoHSCT pending MRD status), followed by KR maintenance until progression.



RECENT FDA APPROVALS

Drug	Class	Target	Date	Indication
lde-cel	CART	BCMA	March 26, 2021	Following 4 or more lines
Cilta-cel	CART	BCMA	February 28, 2002	Following 4 or more lines
Teclistamab	BiAb	BCMA	October 25, 2002	Following 4 or more lines
Talquetamab	BiAb	GPRC5D	August 9, 2023	Following 4 or more lines
Erlantamab	BiAb	BCMA	August 14, 2023	Following 4 or more lines

BISPECIFIC AB V. CAR T Pros Cons Notes Bispecific Off the shelf **Multiple Targets** Continuous dosing Abs Lower rates of ICANS/CRS Lower ORR Infections Higher CRS/ICANS CART One time dose Higher ORR Manufacturing/Availability Issues Infections Use of lymphodepleting chemo LEUKEMIA & LYMPHOMA SOCIETY'

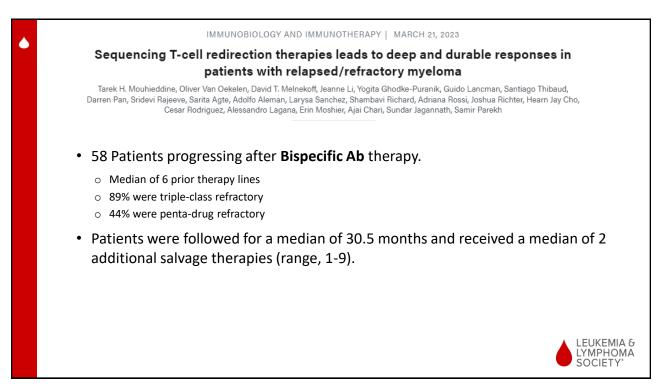
53

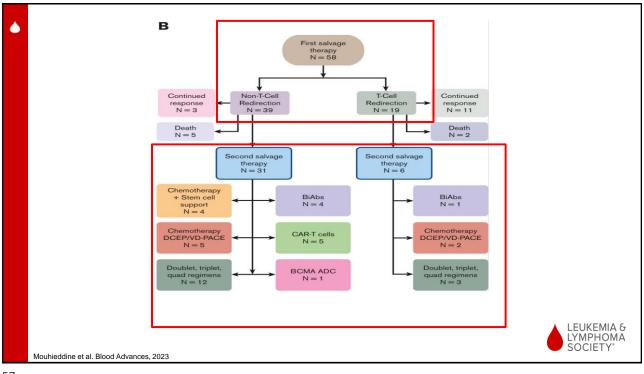
۵

۵

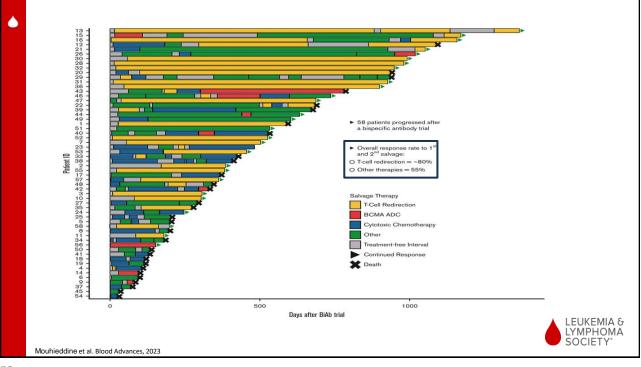
CLINICAL TRIALS AND OBSERVATIONS

Efficacy and safety of cilta-cel in patients with progressive multiple myeloma after exposure to other BCMA-targeting agents


Adam D. Cohen,¹ Maria-Victoria Mateos,² Yael C. Cohen,³ Paula Rodríguez-Otero,⁴ Bruno Paiva,⁴ Niels W. C. J. van de Donk,⁵ Thomas Martin,⁶ Attaya Suvannasankha,⁷ Kevin C. De Braganca,⁸ Christina Corsale,⁸ Jordan M. Schecter,⁸ Helen Varsos,⁸ William Deraedt,⁷ Liwei Wang,⁸ Martin Vogel,¹⁰ Tito Roccia,¹⁰ Xiaoying Xu,⁹ Pankaj Mistry,¹¹ Enrique Zudaire,¹² Muhammad Akram,¹³ Tonia Nesheiwat,¹³ Lida Pacaud,¹³ Irit Avivi,³ and Jesus San-Miguel⁴


Table 3. Response to cilta-cel

	Full cohort N = 20	ADC exposed* N = 13	Bispecific exposed* N = 7
Overall response rate, † % (95% CI)	60.0 (36.1-80.9)	61.5 (31.6-86.1)	57.1 (18.4-90.1)
Best response, rate, n (%)			
Stringent complete response	1 (5.0)	1 (7.7)	0
Complete response	5 (25.0)	4 (30.8)	1 (14.3)
Very good partial response	5 (25.0)	3 (23.1)	2 (28.6)
Partial response	1 (5.0)	0	1 (14.3)
Minimal response:	1 (5.0)	0	1 (14.3)
Stable disease	3 (15.0)	2 (15.4)	1 (14.3)
Progressive disease	3 (15.0)	3 (23.1)	0
Not evaluable‡,§	1 (5.0)	0	1 (14.3)
≥VGPR	11 (55.0)	8 (61.5)	3 (42.9)
Median duration of response (95% CI), mo	11.5 (7.9-NE)	11.5 (7.9-NE)	8.2 (4.4-NE)
Median time to first response (range), mo	0.95 (0.9-6.0)	0.97 (0.9-5.1)	0.92 (0.9-6.0)
Median time to best response (range), mo	2.22 (0.9-9.9)	2.58 (0.9-9.9)	1.41 (0.9-7.0)
MRD negativity, n (%)			
No. of patients evaluable at 10 ⁻⁵	10	7	3
Rate, n (%)	7 (70.0)	5 (71.4)	2 (66.7)

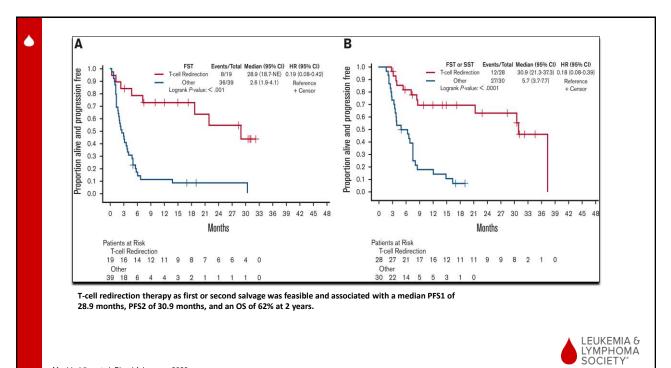


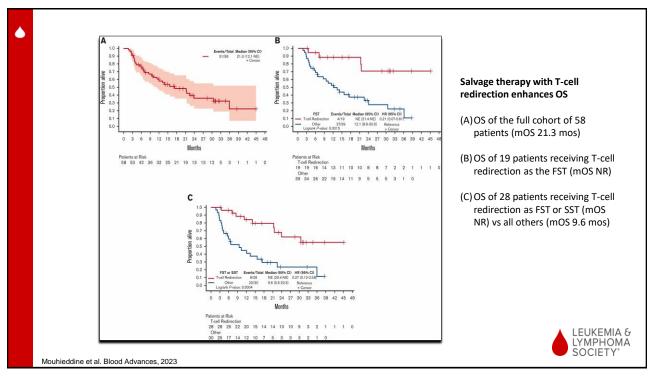
e r		OF B-CELL MUTATION ANTI ING TREATMENT	·	·	
				cilta-cel =18*	
		Treatments	Responders N = 12	Non-responders N = 6	
		Duration of last anti-BCMA treatment, days Median Range	29.5 1-277	63.5 22-527	
		Time from last anti-BCMA treatment to apheresis, days Median Range	161.0 26-695	56.5 40-895	
		Time from last anti-BCMA treatment and cilta-cel infusion, days Median Range	235.0 62-749	117.5 95-944	
	Cohen, A et al Bloo	* Two patients died before confirmed disease evaluations and were excluded	from the analysis.		LEUKEMIA & LYMPHOMA SOCIETY'

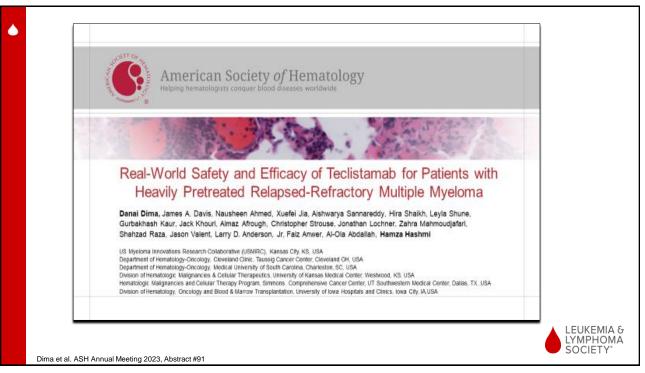
Table 2.

Patient responses to FST

	Overall,	FST		P value	
	N = 58	T-oell redirection, N = 19	Other, N = 39		
Response to FST, n (%)					
Stringent complete response	4 (7)	4 (21)	0 (0)	<.0001*	
Complete response	9 (15.5)	8 (42)	1 (3)		
VGPR	4 (7)	0 (0)	4 (10)		
Partial response	18 (31)	4 (21)	14 (36)		
Minimal response	2 (3)	0 (0)	2 (5)		
Stable disease	9 (15.5)	1 (5)	8 (20)		
Progressive disease	12 (21)	2 (11)	10 (26)		
ORR on FST, n (%)	35 (60)	16 (84)	19 (49)	.0095*	
ORR on FST, 95% CI	47-73	60-97	32-65		
Clinical benefit rate on FST, n (%)	37 (64)	16 (84)	21 (54)	.0239*	
Clinical benefit rate on FST, 95% CI	50-76	60-97	37-70		


* P value < .05.


Mouhieddine et al. Blood Advances, 2023


۵

Mouhieddine et al. Blood Advances, 2023

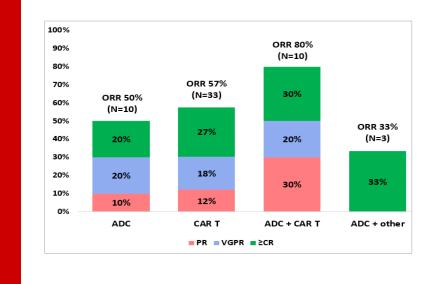
RESULTS: PATIENT CHARACTERISTICS ۵ MTec-1 (N=165) Patients Characteristics N = 106 66.5 (35-87) 64 (33-84) Age, years, median (range) Age >70 years, n (%) 34 (32) Median time since diagnosis, years (range) 5.5 (0.5-20) 6.0 (0.8-22.7) Number of prior lines of therapy (median, range) 6 (4-17) 5 (2-14) >4 prior LOT, n (%) 80 (75) Non-Hispanic White, n (%) 72 (68) 134 (81) Non-Hispanic Black, n (%) 28 (26) 21 (13) R-ISS stage III, n (%) 25/80 (31) 20/162 (12) ECOG Performance Status ≥2, n (%) 35 (33) High-risk cytogenetics, n (%) 56/95 (59) 38/148 (26) Extramedullary disease (EMD), n (%) 45 (42) 28 (17) Refractory status: 97 (92) 68 (64) 128 (78) 50 (30) Triple Refractory, n (%) Penta refractory, n (%) Prior BCMA-directed Therapy 56 (53) _ Prior autologous stem cell transplant, n (%) 61 (58) 135 (82) LEUKEMIA & Prior allogeneic stem cell transplant, n (%) 3 (3)

Dima et al. ASH Annual Meeting 2023, Abstract #91

۵

RESULTS: RESPONSE TO TECLISTAMAB

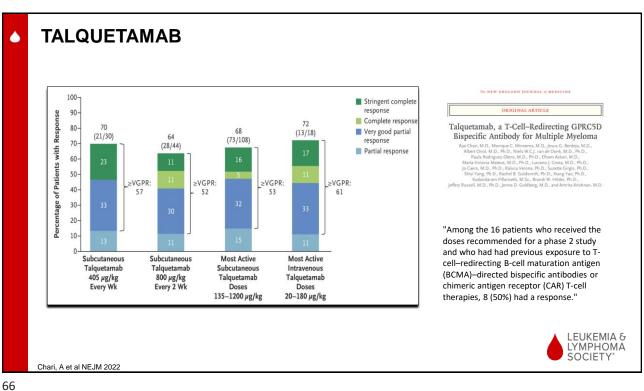
Response (Full Cohort) N (%)	RWE cohort N=104	MajesTec-1 N=165
Overall response rate	70 (66)	104 (63)
Complete response or better	31 (29)	65 (39.4)
Very good partial response	18 (17)	32 (19.4)
Partial response	21 (20)	7 (4.2)
Minimal response	0	2 (1.2)
Stable disease	10 (9.5)	27 (16.4)
Progressive disease	26 (24.5)	24 (14.5)
Not evaluable	0	8 (4.8)


Subgroups of Interest	ORR, N (%)
Age>70 (n=34)	24 (71)
Non-Hispanic Black (n=28)	20 (71)
Pts ineligible for MajestEC-1 trial (n=88)	53 (60)
High-risk cytogenetics (n=56)	35 (63)
Triple Refractory (n=97)	62 (64)
Penta refractory (n=68)	46 (68)
Prior BCMA therapy	33 (59)
R-ISS III (n=25)	13 (52)
EMD (n=45)	21 (47)
Four or less prior LOT (n=26)	21 (81)
>4 lines of prior therapy (n=80)	49 (61)

LYMPHOMA SOCIETY°

Dima et al. ASH Annual Meeting 2023, Abstract #91

RESULTS: RESPONSE RATES TO TECLISTAMAB BY SPECIFIC TYPE OF PRIOR BCMA-DIRECTED THERAPY



Responders had a longer time since their last BCMA-DT (339 vs 205 days; p=0.072), c/t **non-responders**

Pts who started TEC within 3 mo from their last BCMA-DT had a lower ORR (42.9% vs 64.3%; p=0.27)

Dima et al. ASH Annual Meeting 2023, Abstract #91

SUMMARY IN BCMA EXPOSED

Product	ORR in general population	Cohort size with Previous BCMA targeted therapy	ORR with previous BCMA exposure	Difference in ORR	NCT #
Teclistamab	63%	25	40%	23%	NCT04557098
Elranatamab	61%	13	54%	7%	NCT04649359
Talquetamab	70%	16	50%	20%	NCT03399799
Talquetamab + Daratumumab	78%	25	72%	6%	NCT04108195
Cevostamab	58%	43	56%	2%	NCT03275103
Cilta-cel	95%	20	60%	35%	NCT04133636
lde-cel	88%	50	74%	14%	*real world comparison

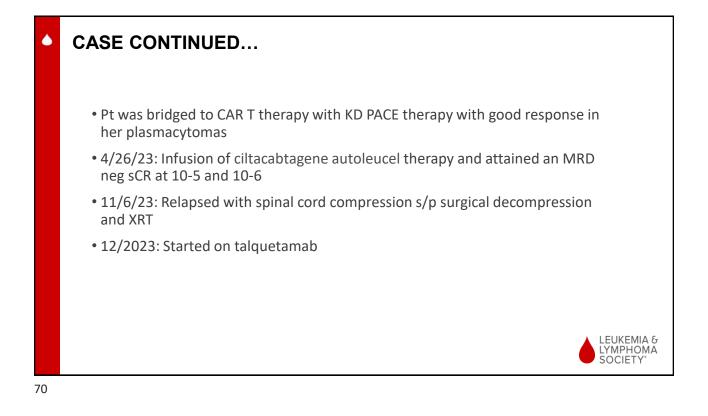
Ferrari et al Bood 2023 Patel et al ASCO 2023 Abstract 20049

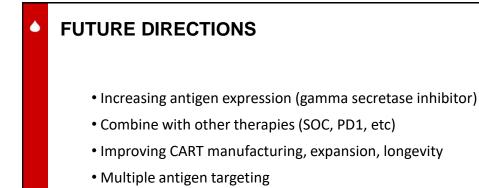
67

۵

CONCLUSIONS

- After treatment with a BiAb or CAR T, one can still exhibit favorable outcomes with T-cell redirection tx.
- Conventional salvage therapy demonstrated significantly lower PFS and OS rates.
- There was no statistically significant difference in PFS1 and OS between patients receiving a BiAb or CAR T-cell therapy as FST, indicating that both CAR T cells and BiAbs can have excellent outcomes.

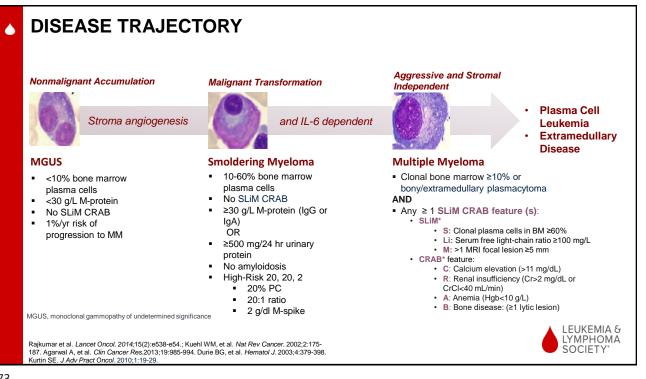

LYMPHOMA


SOCIETY

WHEN CHOOSING...

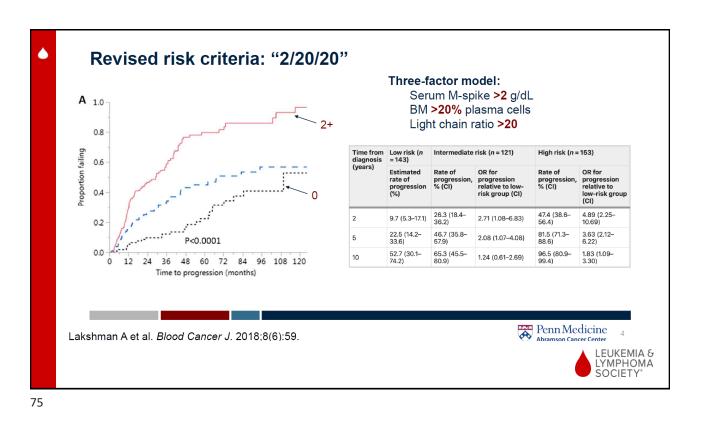
- Duration of therapy
- Dose (ie. phase 1 clinical trial?)
- Treatment-free interval
- Protein and genomic loss of target at the time of progression
 - Bispecifics are repeatedly targeting the same antigen, as opposed to the more one-and-done CAR Ts

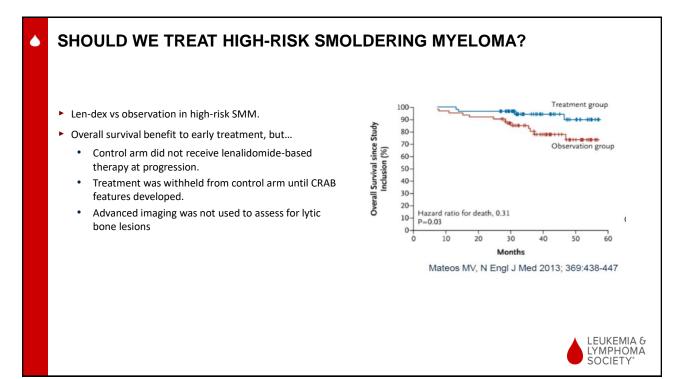
• Optimizing place in therapy

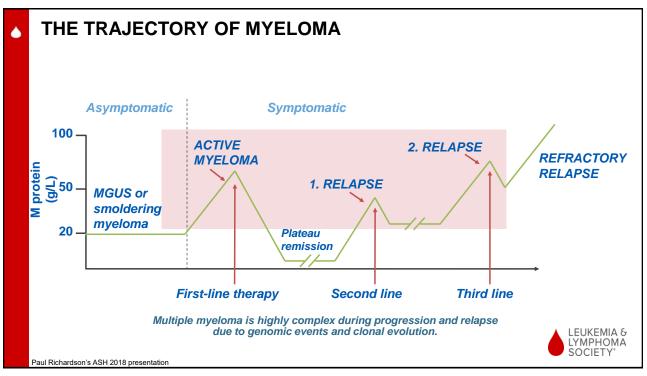

۵

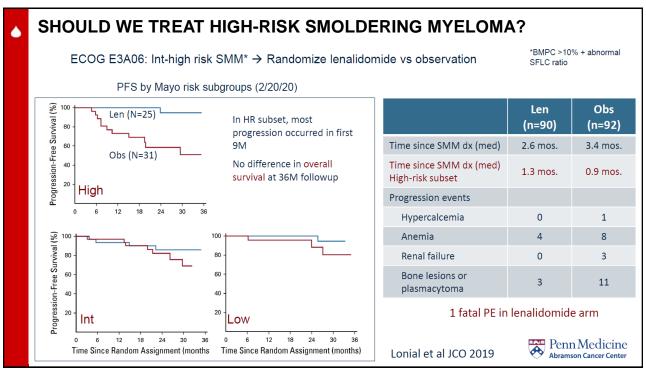
Edward A. Stadtmauer, MD

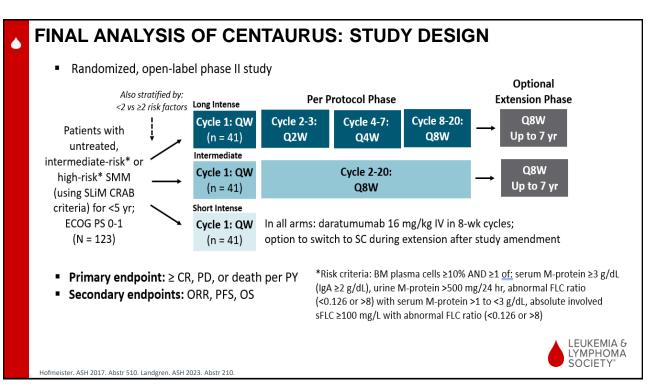
Section Chief, Hematologic Malignancies Roseman, Tarte, Harrow, and Shaffer Families' President's Distinguished Professor University of Pennsylvania Abramson Cancer Center Philadelphia, PA






SMOLDERING MYELOMA CLINICAL CASE


- ▶ 67-year-old male with history of synchronous NSCLC, CKD, HTN, T2DM
- Followed with local oncologist for NSCLC was treated with RUL and RML lobectomies, followed by 4 cycles of adjuvant chemotherapy (cisplatin/pemetrexed), completed in 2020.
- Followed by nephrologist for CKD
- 2021 UPEP shows monoclonal protein (118.88 mg/dL), SPEP negative
- 2022 kidney function stable, full plasma cell dyscrasia workup is performed
- Initial Lab Evaluation
 - WBC: 12.1; Hgb: 16; Plt: 270, Creatinine: 1.76 mg/dL, Calcium: 10.5 mg/dL, SPEP: 0.1 g/dL monoclonal free lambda. UPEP (24 hr): 146.45 mg/dL monoclonal free lambda. Serum free lambda: 1911; serum free kappa: 35.5; ratio: 0.02, IgM: 35; IgA: 142; IgG: 1028, LDH: 180 units/L, Albumin: 4.8 g/dL, Beta 2 microglobulin: 3.30 mcg/mL
 - CT chest/abdomen/pelvis (performed for lung cancer surveillance): No osseous abnormalities. Complete
 skeletal survey: No lytic or blastic lesions
 - Bone Marrow Biopsy and FISH: Plasma cell disorder monoclonal lambda plasma cells comprising 15% of marrow, Congo red negative, FISH – negative for multiple myeloma panel



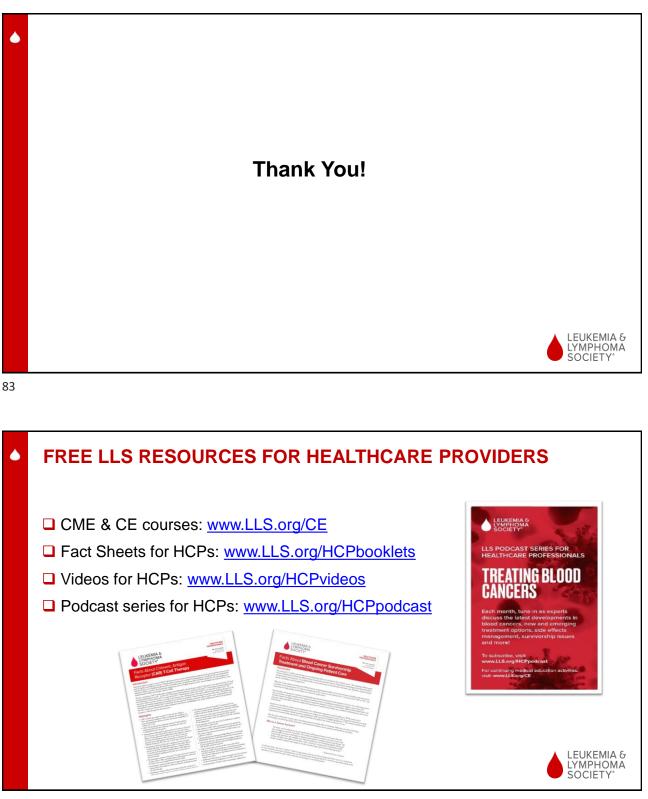
FINAL ANALYSIS OF CENTAURUS

Investigator-Assessed Response	Long (n = 41)	Intermediate (n = 41)	Short (n = 41)
ORR, %	58.5	53.7	37.5
sCR	4.9	7.3	0
CR	0	2.4	0
 VGPR 	24.4	14.6	20.0
■ PR	29.3	29.3	17.5
Median duration of response, mo	NR*	83.4*	72.7*

Outcome	Long (n = 41)	Intermediat e (n = 41)	Short (n = 41)
 PFS, mo Median PFS (per protocol) Including extension phase 	NR NR	NR 84.4	NR 74.1
OS Median, mo 84-mo, % Events, n (%)	NR 81.3 7 (17.1)	NR 89.5 5 (12.2)	NR 88.1 4 (9.8)
Median time to next treatment, mo	NR	NR	76.3

- At median follow-up of ~7 yr, daratumumab monotherapy continued to show clinical activity in patients with intermediate- or high-risk SMM¹
 - Trend toward longer PFS and time to next treatment with long-intense dosing schedule
- No new safety concerns observed with extended daratumumab exposure

SHOULD WE TREAT HIGH-RISK SMOLDERING MYELOMA?


- Many trials are investigating early treatment strategies
- In our opinion, current evidence does not favor early treatment
 - PFS as reported is not a clinically relevant endpoint
 - PFS benefit in E3A06 may be driven by SMM patients actively evolving to
 - OS benefit in QuiReDex may be due to absence of lenalidomide in observation arm at progression
- FDA has not approved any therapy for treatment of smoldering multiple myeloma
- Excellent discussion of these data: Raje and Yee, JCO 38:11 (2020) 119-1125.



- ► SFLCR: 0.02
- Mild hypercalcemia
- CKD of unclear etiology
- No anemia
- No bone lesions
- Kidney Biopsy: Global glomerulosclerosis, moderate, with glomerulopathy, Tubular atrophy and interstitial fibrosis, moderate, Arterio- and arteriolo-sclerosis and hyalinosis, moderate, Immunofluorescence microscopy is negative for paraprotein or significant immune complex deposition
- Management
 - Deferred initiation of treatment. Risk stratification: intermediate risk based on SFLCR (1 of 3 of the 20-2-20 criteria). No indication for smoldering myeloma treatment given not high-risk disease, Clinical evaluation and lab monitoring every 3 months

